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ABSTRACT
Buckling of thin-walled and load-bearing elements of a structure can have devastat-
ing consequences. Hence, buckling checks are an integral part of strength analysis of 
structures. The buckling problem of thin rectangular plates subjected to in-plane com-
pressive and/or shear loading is of great importance in building, bridge, aerospace, 
marine, and shipbuilding industries. When buckling occurs, thin plates undergo large 
out-of-plane deflections, which in turn results in the development of large bending 
stresses and eventually complete failure of the structure. This paper deals with the 
buckling stability assessment of uniaxially-compressed plates with different support 
conditions within the framework of classical plate theory. The main objective of this 
research is to explore some uncovered aspects of buckling stability of plates by con-
sidering the effects of support conditions, aspect ratio, and slenderness ratio, which 
will consequently result in efficient design of such thin-walled structures. To this end, 
in addition to validation of the numerical simulation, some case studies have been per-
formed in order to gain a better understanding of different aspects of buckling stability 
of such thin-walled structures.

Keywords: Plates, Buckling, Support conditions, Aspect ratio, Design Ratio, Slender-
ness ratio, Numerical simulation.

INTRODUCTION

Thin-walled structures are widely used in 
various engineering industries, which seek effi-
ciency in strength and cost by minimizing mate-
rial. They include industrial and residential build-
ings, bridges, ship hulls, aircraft skins, tanks, 
pipes, culverts, and the like. Thin plates usually 
have slenderness ratios between 10 and 100 and 
are often subjected by normal compressive and/
or shearing (in-plane) loads acting in the middle 
plane of the plate. Slender plates undergo elas-
tic buckling and then yield in the post-buckling 
stage. Considering the widespread applications of 
thin-plated structures, accurate prediction of their 
buckling capacity is of great importance in effi-
cient analysis and design of such structures. The 

buckling capacity of a plate is a function of its 
geometrical (slenderness) and material properties 
(Navier, 1823; Ventsel and Krauthammer, 2001).

The buckling problem for a simply supported 
plate subjected to direct, constant compressive 
forces acting in one and two directions was first 
solved by Bryan (1890) using the energy method. 
Dinnik (1911) completed the buckling problem for 
circular compressed plates. The effect of the direct 
shear forces on the buckling of a rectangular sim-
ply supported plate was first studied by Southwell 
and Skan (1924). Cox (1933) presented solutions 
of various buckling problems for thin rectangular 
plates in compression. A comprehensive analysis 
of linear and nonlinear buckling problems for thin 
plates with various shapes under different types 
of loads as well as a considerable presentation of 
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available results for critical forces and buckling 
modes, which can be used in engineering design, 
was provided by Gerard and Becker (1957), Ti-
moshenko and Gere (1961), and Cox (1963). Later 
on, Najafizadeh et al. (2010) studied the buckling 
of simply supported rectangular plates under non-
uniformly distributed in-plane compressive load-
ings by utilizing Galerkin method. 

Latifi et al. (2013) reported a study on the 
buckling problem of thin rectangular function-
ally graded plates subjected to proportional bi-
axial compressive loadings with arbitrary edge 
supports. The buckling analysis was carried out 
using Fourier expansion method and Stokes’ 
transformation. The validity and accuracy of this 
approach in the buckling analysis of thin rectan-
gular FGM (functionally graded material) plates 
were shown and the effects of the plate aspect 
ratio, FGM power index, and loading proportion-
ality factor on the buckling capacity of an FGM 
plate were investigated. Mijušković et al. (2014) 
presented an accurate buckling analysis for thin 
rectangular plates under locally distributed com-
pressive stresses, where the accurate results were 
obtained using the Ritz method together with the 
exact in-plane stress distributions. It was found 
that analytical procedures for the exact stress and 
displacement function determinations in forms of 
series are very complex, thus commercial soft-
wares such as Mathematica or Maple have to be 
resorted for symbolic computations. In addition, 
studies reported by Wang et al. (2007) and Wang 
(2015) showed that the differential quadrature 
method can yield accurate buckling loads for rect-
angular plates under uniformly or non-uniformly 
distributed edge compressions.

Lately, Kilardj et al. (2016) investigated the 
linear and nonlinear buckling of a thin, simply 
supported, partially stretched, and non-defective 

plate through numerical simulation. It was shown 
that local tensile loading can induce buckling in-
stability in thin plates with no defects. In anoth-
er study, a finite element formulation based on 
two-variable refined plate theory was developed 
by Rouzegar and Sharifpoor (2017) for buckling 
analysis of isotropic and orthotropic plates. The 
accuracy of predictions of this method was shown 
and the effects of orthotropy ratio, side-to-thick-
ness ratio, and different types of boundary condi-
tions on the buckling loads were studied as well. 
Most recently, Rammerstorfer (2018) investigated 
the bifurcation buckling under tensile loading of 
beams, plates (with and without cut-outs), rolled 
metal strips, thin cell walls of foams, and of some 
nanometers thick metallic films on polymeric sub-
strates. It was shown that in all cases of buckling 
under tensile loads eventually compressive stress-
es are responsible for the loss of stability.

In this paper, the effects of support conditions, 
aspect ratio, and slenderness ratio on the buckling 
stability of plates under uniformly-distributed 
compressive load are investigated. The accuracy 
of the current analysis is validated through com-
parison studies. Several case studies are then per-
formed in order to gain a better understanding of 
some uncovered aspects of buckling stability of 
such thin-walled structures.

 CHARACTERISTICS OF PLATE MODELS 

In this research, detailed investigations are 
made on the buckling stability of rectangular 
plates with various support conditions, subjected 
to uniaxial compression through numerical sim-
ulation. Fig. 1 shows a typical rectangular plate 
under uniformly-distributed uniaxial compres-
sive stresses. The details of the considered four 
different support conditions, i.e. SSSS, CSCS, 

 

Fig. 1. Rectangular plate under uniaxial compressive stresses
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SCSC, and CCCC, are also provided in Fig.1 and 
Table 1. As shown in Fig. 1, the lengths of the 
plate along x-axis and y-axis are denoted by a and 
b, respectively. In addition, the plate possesses a 
uniform thickness (t) along z-axis. It is also noted 
that the plate is subjected to uniformly-distribut-
ed compressive stresses (Px) along x-axis and the 
magnitude of the uniformly-distributed compres-
sive stresses is 25 MPa.

a varies between 250 mm and 5000 mm and b 
varies between 250 mm and 4000 mm. The thick-
ness of the plate is considered to be constant and 
6 mm in all cases. The geometrical properties of 
the considered plate models are summarized in 
Table 2. As seen in the table, different values of 
plate aspect ratio α = a/b ranging from 0.5 to 2.5 
are considered. It should be noted that four differ-
ent support conditions, i.e. SSSS, CSCS, SCSC, 
and CCCC, are considered for each individual 
model tabulated in Table 2, i.e. P-1 through P-40, 
which results in a total of 160 plate models with 
different geometrical properties as well as sup-
port conditions.

Lastly, the plate models are assumed to be 
made of steel, having a Young’s modulus of 210 
GPa, yield stress of 355 MPa, Poisson’s ratio of 
0.3, tangent modulus of 2.1×105 MPa, and bulk 
density of 7850 kg/m3.

 FINITE ELEMENT MODELING DETAILS

Plates were modeled and analyzed using 
ABAQUS (2016) and PLATE-BUCKLING 
(2015) programs, in this study. ABAQUS (2016) is 
a commercial software suitable for finite element 
analysis and computer-aided engineering. PLATE-
BUCKLING (2015) is based on the finite element 
method and is used to perform plate buckling anal-
ysis for stiffened and unstiffened plates in accor-
dance with EN 1993-1-5 and DIN 18800-3. Two 
typical finite element models of plates developed 
using ABAQUS (2016) and PLATE-BUCKLING 
(2015) programs are illustrated in Fig. 2.

In numerical simulation using ABAQUS 
(2016) software, plates were modeled using S8R5 
element. This is an eight-node doubly-curved thin 
shell element with reduced integration points and 
five degrees of freedom, viz. three translational 
and two in-plane rotational, per node. The analy-
sis started with a load-control standard Newton-
Raphson iterative procedure in the initial stages 
of loading and then shifted to a modified Riks 
procedure as the ultimate load was approached.

In numerical simulation using PLATE-
BUCKLING (2015) program, plates were mod-
eled using an eight-node surface element. The ei-
genvalues and corresponding buckling shapes of 

Table 1. Considered plate support conditions

Plate edge in Fig. 1.
Edge supportsa

CCCC CSCS SCSC SSSS

1 (AB) C C S S

2 (BD) C S C S

3 (CD) C C S S

4 (AC) C S C S
a C: Clamped support & S: Simple support

Table 2. Geometrical properties of plate models with 6 mm thickness

Plate
model

α = a/b = 0.5
Plate
model

α = a/b = 1.0
Plate
model

α = a/b = 1.5
Plate
model

α = a/b = 2.0
Plate
model

α = a/b = 2.5
A

(mm)
b

(mm)
a

(mm)
b

(mm)
a

(mm)
b

(mm)
a

(mm)
b

(mm)
a

(mm)
b

(mm)

P-1 250 500 P-9 250 250 P-17 375 250 P-25 500 250 P-33 625 250

P-2 500 1000 P-10 500 500 P-18 750 500 P-26 1000 500 P-34 1250 500

P-3 750 1500 P-11 750 750 P-19 1125 750 P-27 1500 750 P-35 1875 750

P-4 1000 2000 P-12 1000 1000 P-20 1500 1000 P-28 2000 1000 P-36 2500 1000

P-5 1250 2500 P-13 1250 1250 P-21 1875 1250 P-29 2500 1250 P-37 3125 1250

P-6 1500 3000 P-14 1500 1500 P-22 2250 1500 P-30 3000 1500 P-38 3750 1500

P-7 1750 3500 P-15 1750 1750 P-23 2625 1750 P-31 3500 1750 P-39 4375 1750

P-8 2000 4000 P-16 2000 2000 P-24 3000 2000 P-32 4000 2000 P-40 5000 2000
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plates were determined using the Lanczos meth-
od. The first buckling mode shapes for plates with 
different support conditions and aspect ratios are 
shown in Fig. 3.

DISCUSSION OF RESULTS

Verification of Numerical Predictions

The finite element results as well as findings 
of this study are presented and discussed in Sec-
tion 4. The validity of the numerical predictions 
provided by the ABAQUS (2016) and PLATE-
BUCKLING (2015) programs is initially verified 
in this section through comparison of the critical 
buckling stresses for plates with different aspect 
and slenderness ratios as well as support condi-

tions. The discrepancies between the critical-
buckling-stress predictions of the ABAQUS 
(2016) and PLATE-BUCKLING (2015) pro-
grams are tabulated in Table 3. In the table, the 
results for 40 plate models with aspect ratios 
ranging between 0.5 and 2.5 are presented.

From Table 3, it is evident that the agreement 
between the numerical predictions of the ABAQUS 
(2016) and PLATE-BUCKLING (2015) programs 
is satisfactory. This verifies the accuracy of the 
present finite element modeling and analysis.

Effect of Plate Aspect Ratio

The effect of plate aspect ratio (a/b) on buck-
ling capacity is investigated for plates with dif-
ferent support conditions and the results are il-

 

Fig. 2. Typical finite element models of plates, a) ABAQUS model, b) PLATE-BUCKLING model 

a) b)

 

Fig. 3. The first buckling mode shapes for plates with different support conditions and aspect ratios, a) Support 
condition: CCCC, b) Support condition: CSCS, c) Support condition: SSSS, d) Support condition: SCSC

c) d)

a) b)
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lustrated in Fig. 4. In this figure, σcr /σe is plotted 
against a/b, where σcr is the critical stress deter-
mined numerically using ABAQUS (2016) soft-
ware and σe is the Euler stress predicted by the 
PLATE-BUCKLING (2015) program.

From Fig. 4, it is found that increasing of the 
a/b ratio from 0.5 to 1.0 results in considerable re-
duction of the σcr /σe ratio, while increasing of the 
aspect ratio beyond unity does not seem to have 
a remarkable effect on the buckling strength of 
the plate. It is evident that plates with SSSS and 
CCCC support conditions possess the lowest and 
the highest buckling strengths, respectively.

These results, also, indicate the effectiveness of 
fixity of the loading edges, i.e. 2 (BD) and 4 (AC) 
shown in Fig. 1 and Table 1, on improving the buck-
ling strength of plates as a/b ratio gets smaller than 
unity, while by increasing of the a/b ratio beyond 
unity this effect diminishes. Accordingly, for a/b < 
1.0, the plate with SCSC support conditions pos-
sesses a relatively higher buckling capacity com-
pared to the one with CSCS support conditions, 
while this trend is reversed for a/b > 1.0. It is seen 
that the buckling capacities of plates with CCCC 
and CSCS as well as SCSC and SSSS support con-
ditions get closer as the a/b ratio increases.

Based on the numerical results obtained from 
ABAQUS (2016), the ultimate strength of the 
slender plates is much higher than their buckling 
capacity. This is attributed to the considerable 
post-buckling reserve of slender plates.

Performance Assessment Using Plate “Design 
Ratio”

According to EN 1993-1-5 (2006), the inter-
action between a plate type and local buckling 
behavior is determined by Design Ratio. When 
the value of this parameter, i.e. Design Ratio, ap-

Table 3. Comparison of numerical predictions of criti-
cal buckling stress for plates with different aspect and 
slenderness ratios as well as support conditions

Plate
model

Aspect
ratio

Discrepancy (%) between 
ABAQUS and PLATE-BUCKLING 

predictions

CCCC CSCS SSSS SCSC

P-1

a/b = 0.5

0.20 0.66 0.64 0.28

P-2 0.88 0.64 0.75 0.35

P-3 1.47 0.90 0.90 0.94

P-4 2.09 0.76 0.65 0.34

P-5 1.60 0.62 0.61 0.76

P-6 1.52 0.92 0.55 0.94

P-7 1.09 0.65 0.49 0.49

P-8 2.34 0.64 0.45 0.34

P-9

a/b = 1.0

1.01 1.30 1.26 1.84

P-10 0.53 1.58 6.14 3.27

P-11 0.08 2.37 5.06 3.41

P-12 0.11 4.09 5.48 4.90

P-13 0.10 6.95 8.57 7.76

P-14 0.05 9.66 6.49 6.79

P-15 0.30 6.51 4.72 3.15

P-16 0.37 8.85 10.18 6.59

P-17

a/b = 1.5

1.70 2.44 1.63 4.83

P-18 1.17 2.73 1.6 3.68

P-19 4.28 6.27 2.9 10.35

P-20 2.07 6.54 6.87 5.17

P-21 4.85 3.61 9.25 3.10

P-22 5.04 10.3 7.32 5.89

P-23 4.03 10.2 4.89 5.43

P-24 3.05 4.44 4.62 5.05

P-25

a/b = 2.0

1.37 1.52 1.87 2.34

P-26 3.51 1.91 3.41 4.39

P-27 0.33 6.96 2.12 2.15

P-28 3.61 5.62 1.41 3.27

P-29 3.23 4.46 2.22 2.24

P-30 3.21 8.01 1.17 9.26

P-31 3.19 4.40 1.39 9.09

P-32 1.14 5.09 9.65 5.10

P-33

a/b = 2.5

0.53 0.38 1.05 0.77

P-34 3.78 0.94 1.89 1.39

P-35 0.77 1.37 3.42 2.39

P-36 1.26 9.98 1.69 6.64

P-37 1.76 2.77 6.41 2.55

P-38 0.34 2.69 14.18 0.33

P-39 2.03 1.48 7.36 3.04

P-40 0.45 0.33 8.09 1.74

Fig. 4. Plot of σcr /σe vs. a/b
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proaches unity, it indicates that the plate design is 
economical. Design Ratio can be considered as an 
effective parameter for optimal design of plates. 
On this basis, this parameter is used in order to 
evaluate the buckling behavior of the plates under 
study. In this research, the Design Ratio was de-
termined using the PLATE-BUCKLING (2015) 
program for all models, which is calculated using 
Eq. (1). In this equation, the partial safety factor 
(γM1) is taken as 1.1.

(1)

The plots of σcr versus Design Ratio for plates 
with different aspect ratios as well as support con-
ditions are shown in Fig. 5.

Consistent with all support conditions shown 
in Figs. 5(a) through 5(d), the highest buckling ca-
pacities are found to be in Design Ratios ranging 
between 0.05 and 0.15. Increasing of value of the 
Design Ratio beyond the aforementioned range 
results in significant degradation of the buckling 
strength and also decreasing of the effect of a/b 
ratio on buckling capacity of the plate. From Fig. 
5, it is also found that the buckling capacity of 
plates with lower a/b ratios, especially a/b ≤ 1.0, 
is considerably high. Furthermore, comparison of 
the results depicted in Figs. 5(a) and 5(c) demon-

strates that plates with CCCC support condition 
are less economical compared to those with SSSS 
support condition.

Effect of Plate Thickness-to-Width Ratio

Fig. 6 shows the relationship between the Design 
Ratio and thickness-to-width (t/b) ratio for plates 
with different aspect ratios and support conditions.

From Fig. 6, it is evident that increasing of t/b 
ratio results in decreasing of value of the Design 
Ratio in all cases. This indicates that increasing 
of plate thickness, i.e. use of more material, and/
or decreasing of length of the loaded edges (b), 
i.e. increasing of plate a/b ratio, will adversely af-
fect the economical and optimal design of plates. 
In addition, comparison of the results shown in 
Figs. 6(a) and 6(c), time and again, confirms that 
plates with SSSS support condition can be more 
economical relative to those with clamped sup-
ports on all four edges.

The results of this case study also demonstrate 
that the optimal t/b ratio lies between 0.002 and 
0.004. Moreover, evaluation of the plots shown 
in Figs. 6(a) through 6(d), expect for those for a/b 
= 0.5, indicates that the effects of different aspect 
ratios on determination of the corresponding De-
sign Ratio and t/b ratio are quite minimal. This is 

 

Fig. 5. Plots of plate critical stress versus Design Ratio, a) Support condition: CCCC, b) Support condition: 
CSCS, c) Support condition: SSSS, d) Support condition: SCSC

a) b)

d)c)
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attributed to the fact that the curves correspond-
ing to a/b ratios ranging from 1.0 to 2.5 coincide 
in case of each support condition.

Effect of Plate Slenderness Ratio

In this case study, the effect of plate slen-
derness ratio (β) is investigated by considering 
plates with slenderness ratios ranging from 5.4 to 
86.7 and different support conditions, i.e. CCCC, 
CSCS, SSSS, and SCSC. Herein, β is determined 
by using Eq. (2). The plots of Design Ratio versus 
slenderness ratio are illustrated in Fig. 7.

(2)

As it is seen in Fig. 7, increasing of β results 
in increasing of value of the Design Ratio in all 
cases and Design Ratio indeed tends to approach 
unity. It is quite evident that plates with SSSS and 
CCCC support conditions possess the highest and 
the lowest values of Dsign Ratio. Furthermore, by 
increasing of value of the a/b ratio from 0.5 to 

2.5, the plots of SCSC and CSCS support con-
ditions tend to approach the plots of SSSS and 
CCCC support conditions, respectively. This 
finding is quite consistent with the one discussed 
in section 4.2.

CONCLUSION

The comprehensive and systematic study of 
buckling stability of thin plates is of great impor-
tance in effective design and detailing of such 
thin-walled elements with widespread engineer-
ing applications. In this paper, the buckling sta-
bility of rectangular plates with four types of 
support conditions, i.e. CCCC, SSSS, CSCS, 
and SCSC, as well as five different aspect ra-
tios, i.e. a/b = 0.5, 1.0, 1.5, 2.0, and 2.5, under 
uniaxial compression was further investigated 
through numerical simulation. ABAQUS (2016) 
and PLATE-BUCKLING (2015) programs were 
used for modeling and analysis of the considered 
plate models. The numerical predictions of the 
two aforementioned programs were compared for 

 

Fig. 6. Plots of plate Design Ratio versus t/b ratio, a) Support condition: CCCC, b) Support condition: CSCS, c) 
Support condition: SSSS, d) Support condition: SCSC

a) b)

d)c)
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verification purposes. The major findings of this 
research are summarized in the following:
• Fixity of the loading edges can be effective in 

improving the buckling strength of plates as 
the aspect ratio gets smaller than unity, while 
loading edges fixity does not seem to have a 
considerable effect on the buckling capacity 
in plates with aspect ratios larger than unity.

• The highest buckling capacities of plates were 
found to occur in Design Ratios ranging be-
tween 0.05 and 0.15. Further increasing of value 
of the Design Ratio was shown to result in sig-
nificant degradation of the buckling strength and 
decreasing of the effect of a/b ratio on the buck-
ling strength. Plates with CCCC support con-
dition were shown to be less economical than 
those with simple supports on all four edges.

• It was shown that increasing of t/b ratio re-
sults in decreasing of value of the Design 
Ratio. In other words, increasing of plate 
thickness (more material) and/or decreasing 
of length of the loaded edges (higher a/b ra-
tio), will adversely affect the economical and 
optimal design of plates.

• Increasing of β results in increasing of value 
of the Design Ratio. Plates with SSSS and 
CCCC support conditions possess the highest 
and the lowest values of Dsign Ratio.

NOMENCLATURE

a, b panel dimensions
Ap plate cross-sectional area (b×t)
E modulus of elasticity

 
Fig. 7. Plots of plate Design Ratio vs. slenderness ratio, a) a/b = 0.5, b) a/b = 1.0, c) a/b = 1.5, d) a/b = 2.0, e) 

a/b = 2.5

a) b)

c) d)

e)
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k buckling coefficient
t plate thickness

u, v, w displacement components
x distance across the length of plate
y distance across the width of plate

α(= a/b) length-to-width ratio of the plate
β plate slenderness ratio

γxy, γxz, γyz shear strain components
εx, εy, εz normal strain components

̅λp plate slenderness
ν Poisson’s ratio

σcr critical buckling stress
σe Euler critical stress

σx, σy, σz normal stresses
σy yield stress

τxy, τxz, τyz shear stresses
γM1 partial safety factor
ρc reduction factor
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